Podstawa programowa została określona w rozporządzeniu Ministra Edukacji z dnia 28 czerwca 2024 r. (Dz. U. poz. 996).
Podzielona została na dwa etapy edukacyjne. Na egzaminie ósmoklasisty obowiązują oba zakresy (bez działu XV z części dla klas VII – VIII).
KLASY IV–VI
I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń:
1) zapisuje i odczytuje liczby naturalne wielocyfrowe;
2) interpretuje liczby naturalne na osi liczbowej;
3) porównuje liczby naturalne;
4) zaokrągla liczby naturalne;
5) liczby w zakresie do 3000 zapisane w systemie rzymskim przedstawia w systemie dziesiątkowym, a zapisane w systemie dziesiątkowym przedstawia w systemie rzymskim.
II. Działania na liczbach naturalnych. Uczeń:
1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe lub większe, liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej;
2) dodaje i odejmuje liczby naturalne wielocyfrowe sposobem pisemnym i za pomocą kalkulatora;
3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową sposobem pisemnym, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach);
4) stosuje wygodne dla siebie sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia oraz rozdzielność mnożenia względem dodawania;
5) porównuje liczby naturalne z wykorzystaniem ich różnicy lub ilorazu;
6) rozpoznaje liczby podzielne przez 2, 3, 4, 5, 9, 10, 100;
7) rozpoznaje liczbę złożoną, gdy jest ona jednocyfrowa lub dwucyfrowa, a także gdy na istnienie dzielnika właściwego wskazuje cecha podzielności;
8) oblicza kwadraty i sześciany liczb naturalnych;
9) stosuje reguły dotyczące kolejności wykonywania działań;
10) szacuje wyniki działań;
11) znajduje największy wspólny dzielnik (NWD) i najmniejszą wspólną wielokrotność (NWW) dwóch liczb naturalnych co najwyżej trzycyfrowych metodą rozkładu na czynniki;
12) rozpoznaje wielokrotności danej liczby, kwadraty, sześciany, liczby pierwsze, liczby złożone;
13) odpowiada na pytania dotyczące liczebności zbiorów różnych rodzajów liczb wśród liczb z pewnego niewielkiego zakresu (np. od 1 do 200 czy od 100 do 1000), o ile liczba w odpowiedzi jest na tyle mała, że wszystkie rozważane liczby uczeń może wypisać;
14) rozkłada liczby naturalne na czynniki pierwsze, co najwyżej trzycyfrowe, w przypadku gdy co najwyżej jeden z tych czynników jest liczbą większą niż 10;
15) wyznacza wynik dzielenia z resztą liczby a przez liczbę b i zapisuje liczbę a w postaci a = b ∙ q + r, gdzie 0 ≤ r < b.
III. Liczby całkowite. Uczeń:
1) podaje praktyczne przykłady stosowania liczb ujemnych;
2) interpretuje liczby całkowite na osi liczbowej;
3) oblicza wartość bezwzględną;
4) porównuje liczby całkowite;
5) wykonuje proste rachunki pamięciowe na liczbach całkowitych.
IV. Ułamki zwykłe i dziesiętne. Uczeń:
1) opisuje część danej całości za pomocą ułamka;
2) przedstawia ułamek jako iloraz liczb naturalnych, a iloraz liczb naturalnych jako ułamek zwykły;
3) skraca i rozszerza ułamki zwykłe;
4) sprowadza ułamki zwykłe do wspólnego mianownika;
5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej, a liczbę mieszaną w postaci ułamka niewłaściwego;
6) zapisuje wyrażenia dwumianowane w postaci ułamka dziesiętnego i odwrotnie;
7) zaznacza ułamki zwykłe i dziesiętne na osi liczbowej oraz odczytuje ułamki zwykłe i dziesiętne zaznaczone na osi liczbowej;
8) zapisuje ułamki dziesiętne skończone w postaci ułamków zwykłych;
9) zamienia ułamki zwykłe o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na ułamki dziesiętne skończone dowolną metodą (przez rozszerzanie lub skracanie ułamków zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora);
10) zapisuje ułamki zwykłe o mianownikach innych niż wymienione w pkt 9 w postaci rozwinięcia dziesiętnego nieskończonego, uzyskane w wyniku dzielenia licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora;
11) w sytuacjach praktycznych zaokrągla ułamki dziesiętne do co najwyżej drugiego miejsca po przecinku (zł, gr, m, cm, mm itp.);
12) porównuje ułamki (zwykłe i dziesiętne);
13) oblicza liczbę, której część jest podana (wyznacza całość, której część określono za pomocą ułamka)
14) wyznacza liczbę, która powstaje po powiększeniu lub pomniejszeniu o pewną część innej liczby.
V. Działania na ułamkach zwykłych i dziesiętnych. Uczeń:
1) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane;
2) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne w pamięci (w przykładach najprostszych), pisemnie (w przypadku gdy ułamki mają razem co najwyżej 6 cyfr różnych od zera) i za pomocą kalkulatora (w przykładach trudniejszych);
3) porównuje ułamki z wykorzystaniem ich różnicy;
4) oblicza ułamek danej liczby całkowitej;
5) oblicza kwadraty i sześciany ułamków zwykłych i dziesiętnych oraz liczb mieszanych;
6) wykonuje działania na ułamkach dziesiętnych, używając własnych, poprawnych strategii lub za pomocą kalkulatora;
7) oblicza wartości wyrażeń arytmetycznych, wymagających stosowania działań arytmetycznych na liczbach całkowitych lub na liczbach zapisanych za pomocą ułamków zwykłych, liczb mieszanych i ułamków dziesiętnych, także wymiernych ujemnych, z uwzględnieniem reguł dotyczących kolejności wykonywania działań, o stopniu trudności nie większym niż w przykładzie:
1/2:0,25+5,25:0,05−7 1/2*(2,5 − 3 2/3) + 1,25.
VI. Elementy algebry. Uczeń:
1) korzysta z nieskomplikowanych wzorów, w których występują oznaczenia literowe, opisuje wzór słowami;
2) stosuje oznaczenia literowe nieznanych wielkości liczbowych i zapisuje proste wyrażenia algebraiczne na podstawie informacji osadzonych w kontekście praktycznym, np. zapisuje obwód trójkąta o bokach: a, a + 2, b;
3) rozwiązuje równania pierwszego stopnia z jedną niewiadomą występującą po jednej stronie równania (przez zgadywanie, dopełnianie lub wykonanie działania odwrotnego), np. (x – 2)/3 = 4
VII. Proste i odcinki. Uczeń:
1) rozpoznaje i nazywa figury: punkt, prosta, półprosta, odcinek;
2) rozpoznaje proste, odcinki prostopadłe i równoległe;
3) rysuje pary odcinków prostopadłych i równoległych;
4) mierzy odcinek z dokładnością do 1 mm;
5) znajduje odległość punktu od prostej.
VIII. Kąty. Uczeń:
1) wskazuje w dowolnym kącie ramiona i wierzchołek;
2) mierzy z dokładnością do 1° kąty mniejsze niż 180°;
3) rysuje kąty mniejsze od 180°;
4) rozpoznaje kąt prosty, ostry i rozwarty;
5) porównuje kąty;
6) rozpoznaje kąty wierzchołkowe i przyległe oraz korzysta z ich własności.
IX. Wielokąty, koła i okręgi. Uczeń:
1) rozpoznaje i nazywa trójkąty ostrokątne, prostokątne, rozwartokątne, równoboczne i równoramienne;
2) konstruuje trójkąt o danych trzech bokach i ustala możliwość zbudowania trójkąta o zadanych bokach;
3) stosuje twierdzenie o sumie kątów wewnętrznych trójkąta;
4) rozpoznaje i nazywa: kwadrat, prostokąt, romb, równoległobok i trapez;
5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku i trapezu, rozpoznaje figury osiowosymetryczne i wskazuje osie symetrii figur;
6) wskazuje na rysunku cięciwę, średnicę oraz promień koła i okręgu;
7) rysuje cięciwę koła i okręgu, a także, jeżeli dany jest środek okręgu, promień i średnicę;
8) w trójkącie równoramiennym wyznacza przy danym jednym kącie: miary pozostałych kątów; oraz przy danych obwodzie i długości jednego boku – długości pozostałych boków.
X. Bryły. Uczeń:
1) rozpoznaje graniastosłupy proste, ostrosłupy, walce, stożki i kule w sytuacjach praktycznych i wskazuje te bryły wśród innych modeli brył;
2) wskazuje wśród graniastosłupów prostopadłościany i sześciany oraz uzasadnia swój wybór;
3) rozpoznaje siatki graniastosłupów prostych i ostrosłupów;
4) rysuje siatki prostopadłościanów;
5) wykorzystuje podane zależności między długościami krawędzi graniastosłupa do wyznaczania długości poszczególnych krawędzi.
XI. Obliczenia w geometrii. Uczeń:
1) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów;
2) oblicza obwód wielokąta o danych długościach boków;
3) oblicza pola: trójkąta, kwadratu, prostokąta, rombu, równoległoboku, trapezu, przedstawionych na rysunku oraz w sytuacjach praktycznych, w tym także dla danych wymagających zamiany jednostek;
4) stosuje jednostki pola: mm2, cm2, dm2, m2, km2, ar, hektar (bez zamiany jednostek w trakcie obliczeń);
5) oblicza pola wielokątów metodą podziału na mniejsze wielokąty lub uzupełniania do większych wielokątów;
6) oblicza objętość i pole powierzchni prostopadłościanu przy danych długościach krawędzi;
7) stosuje jednostki objętości i pojemności: cm3, dm3, m3, mililitr, litr.
XII. Obliczenia praktyczne. Uczeń:
1) interpretuje 100% danej wielkości jako całość, 50% – jako połowę, 25% – jako jedną czwartą, 10% – jako jedną dziesiątą, 1% – jako jedną setną części danej wielkości liczbowej;
2) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 20%, 10%;
3) wykonuje proste obliczenia zegarowe na godzinach, minutach i sekundach;
4) wykonuje proste obliczenia kalendarzowe na dniach, tygodniach, miesiącach, latach;
5) odczytuje temperaturę (dodatnią i ujemną);
6) zamienia i prawidłowo stosuje jednostki długości: milimetr, centymetr, decymetr, metr, kilometr;
7) zamienia i prawidłowo stosuje jednostki masy: gram, dekagram, kilogram, tona;
8) oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali oraz długość odcinka w skali, gdy dana jest jego rzeczywista długość;
9) w sytuacji praktycznej oblicza: drogę przy danej prędkości i czasie, prędkość przy danej drodze i czasie, czas przy danej drodze i prędkości oraz stosuje jednostki prędkości km/h i m/s.
XIII. Elementy statystyki opisowej. Uczeń:
1) gromadzi i porządkuje dane;
2) odczytuje i interpretuje dane przedstawione w tekstach, tabelach, na diagramach i na wykresach, np.: wartości z wykresu, wartość największą, najmniejszą, opisuje przedstawione w tekstach, tabelach, na diagramach i na wykresach zjawiska przez określenie przebiegu zmiany wartości danych, np. z użyciem określenia „wartości rosną”, „wartości maleją”, „wartości są takie same” („przyjmowana wartość jest stała”).
XIV. Zadania tekstowe. Uczeń:
1) czyta ze zrozumieniem tekst zawierający informacje liczbowe;
2) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub wygodne dla niego zapisanie informacji i danych z treści zadania;
3) dostrzega zależności między podanymi informacjami;
4) dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie rozwiązania;
5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody;
6) weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania, np. poprzez szacowanie, sprawdzanie wszystkich warunków zadania, ocenianie rzędu wielkości otrzymanego wyniku;
7) układa zadania i łamigłówki, rozwiązuje je; stawia nowe pytania związane z sytuacją w rozwiązanym zadaniu.
KLASY VII i VIII
I. Potęgi o podstawach wymiernych. Uczeń:
1) zapisuje iloczyn jednakowych czynników w postaci potęgi o wykładniku całkowitym dodatnim;
2) mnoży i dzieli potęgi o wykładnikach całkowitych dodatnich;
3) mnoży potęgi o różnych podstawach i jednakowych wykładnikach;
4) podnosi potęgę do potęgi;
5) odczytuje i zapisuje liczby w notacji wykładniczej a*10^𝑘, gdy 1 ≤ a < 10, k jest liczbą całkowitą.
II. Pierwiastki. Uczeń:
1) oblicza wartości pierwiastków kwadratowych i sześciennych z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych;
2) szacuje wielkość danego pierwiastka kwadratowego lub sześciennego oraz wyrażenia arytmetycznego zawierającego pierwiastki;
3) porównuje wartość wyrażenia arytmetycznego zawierającego pierwiastki z daną liczbą wymierną oraz znajduje liczby wymierne większe lub mniejsze od takiej wartości, np. znajduje liczbę całkowitą 𝑎𝑎 taką, że: a ≤ √137 < a + 1;
4) oblicza pierwiastek z iloczynu i ilorazu dwóch liczb, wyłącza liczbę przed znak pierwiastka i włącza liczbę pod znak pierwiastka;
5) mnoży i dzieli pierwiastki tego samego stopnia.
III. Tworzenie wyrażeń algebraicznych z jedną i wieloma zmiennymi. Uczeń:
1) zapisuje wyniki podanych działań w postaci wyrażeń algebraicznych jednej lub kilku zmiennych;
2) oblicza wartości liczbowe wyrażeń algebraicznych;
3) zapisuje zależności przedstawione w zadaniach w postaci wyrażeń algebraicznych jednej lub kilku zmiennych;
4) zapisuje rozwiązania zadań w postaci wyrażeń algebraicznych jak w przykładzie: Bartek i Grześ zbierali kasztany. Bartek zebrał n kasztanów, Grześ zebrał 7 razy więcej. Następnie Grześ w drodze do domu zgubił 10 kasztanów, a połowę pozostałych oddał Bartkowi. Ile kasztanów ma teraz Bartek, a ile ma Grześ?
IV. Przekształcanie wyrażeń algebraicznych. Sumy algebraiczne i działania na nich. Uczeń:
1) porządkuje jednomiany i dodaje jednomiany podobne (tzn. różniące się jedynie współczynnikiem liczbowym);
2) dodaje i odejmuje sumy algebraiczne, redukując wyrazy podobne;
3) mnoży sumy algebraiczne przez jednomian i dodaje wyrażenia powstałe z mnożenia sum algebraicznych przez jednomiany;
4) mnoży dwumian przez dwumian, redukując wyrazy podobne.
V. Obliczenia procentowe. Uczeń:
1) przedstawia część wielkości jako procent tej wielkości;
2) oblicza liczbę a równą p procent danej liczby b;
3) oblicza, jaki procent danej liczby b stanowi liczba a;
4) oblicza liczbę b, której p procent jest równe a;
5) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, również w przypadkach dwukrotnych podwyżek lub obniżek danej wielkości.
VI. Równania z jedną niewiadomą. Uczeń:
1) sprawdza, czy dana liczba jest rozwiązaniem równania (stopnia pierwszego, drugiego lub trzeciego) z jedną niewiadomą, np. sprawdza, które liczby całkowite niedodatnie i większe od – 8 są rozwiązaniami równania x^3/8 + x^2/2 = 0
2) rozwiązuje równania pierwszego stopnia z jedną niewiadomą metodą równań równoważnych;
3) rozwiązuje równania, które po prostych przekształceniach wyrażeń algebraicznych sprowadzają się do równań pierwszego stopnia z jedną niewiadomą;
4) rozwiązuje zadania tekstowe za pomocą równań pierwszego stopnia z jedną niewiadomą, w tym także z obliczeniami procentowymi;
5) przekształca proste wzory, aby wyznaczyć zadaną wielkość we wzorach geometrycznych (np. pól figur) i fizycznych (np. dotyczących prędkości, drogi i czasu).
VII. Proporcjonalność prosta. Uczeń:
1) podaje przykłady wielkości wprost proporcjonalnych;
2) wyznacza wartość przyjmowaną przez wielkość wprost proporcjonalną w przypadku konkretnej zależności proporcjonalnej, np. wartość zakupionego towaru w zależności od liczby sztuk towaru;
3) stosuje podział proporcjonalny.
VIII. Własności figur geometrycznych na płaszczyźnie. Uczeń:
1) zna i stosuje twierdzenie o równości kątów wierzchołkowych (z wykorzystaniem zależności między kątami przyległymi);
2) przedstawia na płaszczyźnie dwie proste w różnych położeniach względem siebie, w szczególności proste prostopadłe i proste równoległe;
3) korzysta z własności prostych równoległych, w szczególności stosuje równość kątów odpowiadających i naprzemianległych;
4) zna i stosuje cechy przystawania trójkątów;
5) zna nierówność trójkąta AB + BC ≥ AC i wie, kiedy zachodzi równość;
6) wykonuje proste obliczenia geometryczne, wykorzystując sumę kątów wewnętrznych trójkąta i własności trójkątów równoramiennych;
7) zna i stosuje w sytuacjach praktycznych twierdzenie Pitagorasa (bez twierdzenia odwrotnego);
8) przeprowadza dowody geometryczne nie trudniejsze niż w przykładach:
a) dany jest ostrokątny trójkąt równoramienny ABC, w którym AC = BC. W tym trójkącie poprowadzono wysokość AD. Udowodnij, że kąt ACB jest dwa razy większy od kąta BAD,
b) na bokach BC i CD prostokąta ABCD zbudowano, na zewnątrz prostokąta, dwa trójkąty równoboczne BCE i CDF. Udowodnij, że AE = AF.
IX. Wielokąty. Uczeń:
1) zna pojęcie wielokąta foremnego;
2) stosuje wzory na pole trójkąta, prostokąta, kwadratu, równoległoboku, rombu, trapezu, a także do wyznaczania długości odcinków w zadaniach nie trudniejszych niż w przykładach:
a) oblicz najkrótszą wysokość trójkąta prostokątnego o bokach długości: 5 cm, 12 cm i 13 cm,
b) przekątne rombu ABCD mają długości AC = 8 dm i BD = 10 dm. Przekątną BD rombu przedłużono do punktu E w taki sposób, że odcinek BE jest dwa razy dłuższy od tej przekątnej. Oblicz pole trójkąta CDE. (Zadanie ma dwie odpowiedzi.)
X. Oś liczbowa. Układ współrzędnych na płaszczyźnie. Uczeń:
1) zaznacza na osi liczbowej zbiory liczb spełniających warunek taki jak x ≥ 1,5 lub taki jak x < −4/7;
2) znajduje współrzędne danych (na rysunku) punktów kratowych w układzie współrzędnych na płaszczyźnie;
3) rysuje w układzie współrzędnych na płaszczyźnie punkty kratowe o danych współrzędnych całkowitych (dowolnego znaku);
4) znajduje środek odcinka, którego końce mają dane współrzędne (całkowite lub wymierne) oraz znajduje współrzędne drugiego końca odcinka, gdy dany jest jeden koniec i środek;
5) oblicza długość odcinka, którego końce są danymi punktami kratowymi w układzie współrzędnych;
6) dla danych punktów kratowych A i B znajduje inne punkty kratowe należące do prostej AB.
XI. Geometria przestrzenna. Uczeń:
1) rozpoznaje graniastosłupy i ostrosłupy – w tym proste i prawidłowe;
2) oblicza objętości i pola powierzchni graniastosłupów prostych, prawidłowych i takich, które nie są prawidłowe o poziomie trudności nie większym niż w przykładowym zadaniu: Podstawą graniastosłupa prostego jest trójkąt równoramienny, którego dwa kąty mają miarę po 45°, a najdłuższy bok ma długość 6√2 dm. Jeden z boków prostokąta, który jest w tym graniastosłupie ścianą boczną o największej powierzchni, ma długość 4 dm. Oblicz objętość i pole powierzchni całkowitej tego graniastosłupa.
3) oblicza objętości ostrosłupów i pola powierzchni ostrosłupów prawidłowych, i takich, które nie są prawidłowe w zadaniach nie trudniejszych niż w przykładzie: Prostokąt ABCD jest podstawą ostrosłupa ABCDS, punkt M jest środkiem krawędzi AD, odcinek MS jest wysokością ostrosłupa. Dane są następujące długości krawędzi: AD = 10 cm, AS = 13 cm oraz AB = 20 cm. Oblicz objętość ostrosłupa.
XII. Wprowadzenie do kombinatoryki i rachunku prawdopodobieństwa. Uczeń:
1) wyznacza zbiory obiektów, analizuje i oblicza, ile jest obiektów, mających daną własność, w przypadkach niewymagających stosowania reguł mnożenia i dodawania;
2) przeprowadza proste doświadczenia losowe, polegające na rzucie monetą, rzucie sześcienną kostką do gry, rzucie kostką wielościenną lub losowaniu kuli spośród zestawu kul, analizuje je i oblicza prawdopodobieństwa zdarzeń w doświadczeniach losowych.
XIII. Odczytywanie danych i elementy statystyki opisowej. Uczeń:
1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów, w tym także wykresów w układzie współrzędnych;
2) tworzy diagramy słupkowe i kołowe oraz wykresy liniowe na podstawie zebranych przez siebie danych lub danych pochodzących z różnych źródeł;
3) oblicza średnią arytmetyczną kilku liczb.
XIV. Długość okręgu i pole koła. Uczeń:
1) oblicza długość okręgu o danym promieniu lub danej średnicy;
2) oblicza promień lub średnicę okręgu o danej długości okręgu;
3) oblicza pole koła o danym promieniu lub danej średnicy;
4) oblicza promień lub średnicę koła o danym polu.
[DO ZREALIZOWANIA PO EGZAMINIE ÓSMOKLASISTY]
XV. Symetrie. Uczeń:
1) rozpoznaje symetralną odcinka i dwusieczną kąta;
2) zna i stosuje w zadaniach podstawowe własności symetralnej odcinka i dwusiecznej kąta jak w przykładzie: Wierzchołek C rombu ABCD leży na symetralnych boków AB i AD. Oblicz miary kątów tego rombu;
3) rozpoznaje figury osiowosymetryczne i wskazuje ich osie symetrii oraz uzupełnia figurę do figury osiowosymetrycznej przy danych: osi symetrii figury i części figury;
4) rozpoznaje figury środkowosymetryczne i wskazuje ich środki symetrii.